pymaid

pymaid (“python-catmaid”) lets you interface with a CATMAID server such as those provided by VFB to host published data from the FAFB dataset. It’s built on top of navis and returns generally returns data (neurons, volumes) in a way that you can plug them straight into navis - e.g. for plotting.

Connecting

The VFB servers (see here what’s available) are public and don’t require an API token for read-access which makes connecting dead simple:

import pymaid
import navis

navis.set_pbars(jupyter=False)
pymaid.set_pbars(jupyter=False)

# Connect to the VFB CATMAID server hosting the FAFB data
rm = pymaid.connect_catmaid(server="https://fafb.catmaid.virtualflybrain.org/", api_token=None, max_threads=10)

# Test call to see if connection works 
print(f'Server is running CATMAID version {rm.catmaid_version}')
WARNING: Could not load OpenGL library.
INFO  : Global CATMAID instance set. Caching is ON. (pymaid)
Server is running CATMAID version 2020.02.15-905-g93a969b37

We will cover how to search the VFB data base for neurons you might want to pull from the CATMAID server elsewhere. Instead, this notebook should give you a flavour of what kind of data you can pull and how to handle it.

Pulling neurons

Let’s start with pulling neurons:

# Pull a neuron by its ID (16) -> this happens to be a olfactory PN too 
n = pymaid.get_neurons(16)
n

type CatmaidNeuron
name Uniglomerular mALT VA6 adPN 017 DB
id 16
n_nodes 16840
n_connectors 2158
n_branches 1172
n_leafs 1230
cable_length 4003103.232861
soma [2941309]
units 1 nanometer

See how this neuron’s type is “CatmaidNeuron”?

That’s because pymaid subclasses navis.TreeNeuron $\rightarrow$ pymaid.CatmaidNeuron and navis.NeuronList $\rightarrow$ pymaid.CatmaidNeuronList. The purpose of that is to add a bit of extra functionality (such as lazy loading of data) but both CatmaidNeuron and CatmaidNeuronList work as drop in replacements for their parent class.

Proof:

# Plot CatmaidNeuron with navis
navis.plot3d(n, width=1000, connectors=True, c='k')

get_neurons() returns neurons including their “connectors” - i.e. pre- (red) and postsynapses (blue). For this particular neuron, the published data comprehensively labels the axonal synapses but not the dendrites. Analogous to the nodes table, you can access the connectors like so:

n.connectors.head()

node_id connector_id type x y z
0 97891 97895 0 436882.09375 161840.453125 212160.0
1 2591 97954 0 437120.00000 160998.000000 211920.0
2 2665 98300 0 437183.75000 162323.515625 214880.0
3 2646 98373 0 437041.68750 162451.937500 214120.0
4 2654 98415 0 436760.90625 163689.796875 214440.0

Let’s run a bigger example and pull all data published with Bates, Schlegel et al. 2020. For this, we will use “annotations”. These are effectively text labels that group neurons together.

bates = pymaid.find_neurons(annotations='Paper: Bates and Schlegel et al 2020')
len(bates)
INFO  : Found 583 neurons matching the search parameters (pymaid)





583

bates is a CatmaidNeuronList containing 583 neurons. Importantly pymaid has not yet loaded any data other than names! Note all the “NAs” in the summary:

bates.head()

type name skeleton_id n_nodes n_connectors n_branches n_leafs cable_length soma units
0 CatmaidNeuron Uniglomerular mALT DA1 lPN 57316 2863105 ML 2863104 NA NA NA NA NA NA 1 nanometer
1 CatmaidNeuron Uniglomerular mALT DA3 adPN 57350 HG 57349 NA NA NA NA NA NA 1 nanometer
2 CatmaidNeuron Uniglomerular mALT DA1 lPN 57354 GA 57353 NA NA NA NA NA NA 1 nanometer
3 CatmaidNeuron Uniglomerular mALT VA6 adPN 017 DB 16 NA NA NA NA NA NA 1 nanometer
4 CatmaidNeuron Uniglomerular mALT VA5 lPN 57362 ML 57361 NA NA NA NA NA NA 1 nanometer

We could have used pymaid.get_neurons('annotation:Paper: Bates and Schlegel et al 2020') instead to load all data up-front.

But: the free Deepnote machines are limited to 4Gb memory though and we might exceed that (soft) limit by loading all neurons at once - in particular if there are several notebooks running in parallel. Feel free to try it with get_neurons but keep an eye on the memory usage!

Continuing with our example: the CatmaidNeuronList will lazy load data from the server as you request it.

# Access the first neurons nodes 
# -> this will trigger a data download
_ = bates[0].nodes 

# Run summary again 
bates.head()

type name skeleton_id n_nodes n_connectors n_branches n_leafs cable_length soma units
0 CatmaidNeuron Uniglomerular mALT DA1 lPN 57316 2863105 ML 2863104 6774 470 280 292 1522064.513255 [3245741] 1 nanometer
1 CatmaidNeuron Uniglomerular mALT DA3 adPN 57350 HG 57349 NA NA NA NA NA NA 1 nanometer
2 CatmaidNeuron Uniglomerular mALT DA1 lPN 57354 GA 57353 NA NA NA NA NA NA 1 nanometer
3 CatmaidNeuron Uniglomerular mALT VA6 adPN 017 DB 16 NA NA NA NA NA NA 1 nanometer
4 CatmaidNeuron Uniglomerular mALT VA5 lPN 57362 ML 57361 NA NA NA NA NA NA 1 nanometer

Note how the first neuron now has data where there were only NAs before? That’s because we loaded it on-demand.

Let’s do something more useful next: find and plot all uniglomelar DA1 projection neurons by their name.

# Name will be match pattern "Uniglomerular {tract} DA1 {lineage}"
import re 
prog = re.compile("Uniglomerular(.*?) DA1 ")

# Match all neuron names in `bates` against that pattern
is_da1 = list(map(lambda x: prog.match(x) != None, bates.name))

# Subset list 
da1 = bates[is_da1]
da1.head()

type name skeleton_id n_nodes n_connectors n_branches n_leafs cable_length soma units
0 CatmaidNeuron Uniglomerular mALT DA1 lPN 57316 2863105 ML 2863104 6774 470 280 292 1522064.513255 [3245741] 1 nanometer
1 CatmaidNeuron Uniglomerular mALT DA1 lPN 57354 GA 57353 NA NA NA NA NA NA 1 nanometer
2 CatmaidNeuron Uniglomerular mALT DA1 lPN 57382 ML 57381 NA NA NA NA NA NA 1 nanometer
3 CatmaidNeuron Uniglomerular mlALT DA1 vPN mlALTed Milk 23348... 2334841 NA NA NA NA NA NA 1 nanometer
4 CatmaidNeuron Uniglomerular mALT DA1 lPN PN021 2345090 DB RJVR 2345089 NA NA NA NA NA NA 1 nanometer
# Plot neurons by their lineage  
for n in da1:
    # Split name into components and keep only the tract
    n.lineage = n.name.split(' ')[3]    

# Generate a color per tract
import seaborn as sns
import numpy as np 

lineages = np.unique(da1.lineage) 
lin_cmap = dict(zip(lineages, sns.color_palette('muted', len(lineages))))
neuron_cmap = {n.id: lin_cmap[n.lineage] for n in da1}

navis.plot3d(da1, color=neuron_cmap, hover_name=True)

Let’s throw in the neuropil mesh for good measure. CATMAID servers can also host “volumes” (i.e. meshes). To find out what’s available:

vols = pymaid.get_volume()
vols.head()
INFO  : Retrieving list of available volumes. (pymaid)

id name comment user_id editor_id project_id creation_time edition_time annotations area volume watertight meta_computed
0 439 v14.neuropil None 55 247 1 2017-10-05T21:01:18.683Z 2018-08-30T17:21:20.910Z None 6.377313e+11 1.533375e+16 False True
1 440 AME_R Accessory medulla right 55 55 1 2017-10-08T13:54:03.279Z 2017-10-08T13:54:03.279Z None 1.894095e+09 4.799292e+12 True True
2 441 LO_R Lobula right 55 55 1 2017-10-08T13:54:03.840Z 2017-10-08T13:54:03.840Z None 4.103282e+10 5.790708e+14 True True
3 442 NO Noduli 55 55 1 2017-10-08T13:54:04.084Z 2017-10-08T13:54:04.084Z None 3.955158e+09 1.796395e+13 True True
4 443 BU_R Bulb right 55 55 1 2017-10-08T13:54:04.263Z 2017-10-08T13:54:04.263Z None 1.445868e+09 4.109262e+12 True True
# Get the neuropil volume 
v14neuropil = pymaid.get_volume('v14.neuropil')

# Make it slightly more transparent
v14neuropil.color = (.8, .8, .8, .3)
INFO  : Cached data used. Use `pymaid.clear_cache()` to clear. (pymaid)
# Plot with neuropil volume
navis.plot3d([da1, v14neuropil], color=neuron_cmap)

Suggested exercise:

Pulling connectivity

Broadly speaking, CATMAID let’s you fetch connectivity data as either list of up- and downstream partners or as whole adjacency matrices.

# Pull downstream partners of DA1 PNs
da1_ds = pymaid.get_partners(da1,
                             threshold=3,  # anything with >= 3 synapses
                             directions=['outgoing']  # downstream partners only
                              )

# Result is a pandas DataFrame
da1_ds.head()
INFO  : Fetching connectivity table for 17 neurons (pymaid)
INFO  : Done. Found 0 pre-, 270 postsynaptic and 0 gap junction-connected neurons (pymaid)

neuron_name skeleton_id num_nodes relation 2863104 57353 57381 2334841 2345089 27295 ... 2319457 4207871 755022 2379517 61221 3239781 2381753 57311 57323 total
0 Uniglomerular mlALT DA1 vPN mlALTed Milk 18114... 1811442 11769 downstream 30 3 4 0 0 15 ... 0 0 32 0 26 0 0 21 20 151.0
1 Uniglomerular mlALT DA1 vPN mlALTed Milk 23348... 2334841 6362 downstream 0 0 0 0 14 0 ... 22 17 0 28 0 26 32 0 0 139.0
2 LHAV4a4#1 1911125 FML PS RJVR 1911124 6969 downstream 23 6 9 0 0 5 ... 0 0 19 0 13 0 0 19 15 109.0
3 LHAV2a3#1 1870231 RJVR AJES PS 1870230 14820 downstream 5 23 28 0 0 10 ... 0 0 19 0 7 0 0 5 7 105.0
4 LHAV4c1#1 488056 downstream DA1 GSXEJ 488055 12137 downstream 15 3 0 0 0 16 ... 0 0 15 0 15 0 0 17 11 92.0

5 rows Ă— 22 columns

Each row is a synaptic downstream partner of our query DA1 neurons. The columns to the left contain the synapses they receive from individual query neurons. For example 1811442 (first row) receives 30 synapses from the DA1 PN with ID 2863104.

# Get an adjacency matrix between all Bates, Schlegel et al. neurons
adj = pymaid.adjacency_matrix(bates)
adj.head()

targets 2863104 57349 57353 16 57361 15738898 57365 4182038 3813399 11524119 ... 57323 4624362 1853423 2842610 57333 4624374 3080183 57337 4624378 57341
sources
2863104 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 2.0 0.0 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
57349 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
57353 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
57361 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 rows Ă— 583 columns

# Plot a quick & dirty adjacency matrix
import seaborn as sns 

ax = sns.clustermap(adj, vmax=10, cmap='Greys')
/shared-libs/python3.7/py/lib/python3.7/site-packages/seaborn/matrix.py:649: UserWarning:

Clustering large matrix with scipy. Installing `fastcluster` may give better performance.

png

We can also ask for where in space specific connections are made:

# Axo-axonic connections between two different types of DA1 PNs
cn = pymaid.get_connectors_between(2863104, 1811442)
cn.head()

connector_id connector_loc node1_id source_neuron confidence1 creator1 node1_loc node2_id target_neuron confidence2 creator2 node2_loc
0 6736296 [359448.44, 159319.03, 150560.0] 3163408 2863104 5 NaN [359487.3, 159145.66, 150600.0] 6736298 1811442 5 NaN [359611.9, 159541.48, 150560.0]
1 6795172 [356041.88, 149555.53, 147920.0] 6795195 2863104 5 NaN [354724.44, 149284.1, 147920.0] 6795153 1811442 5 NaN [356366.16, 149854.86, 147920.0]
2 6795291 [355189.5, 150232.48, 148240.0] 6795293 2863104 5 NaN [354595.62, 149464.8, 148240.0] 6795214 1811442 5 NaN [355472.28, 150294.75, 148160.0]
3 6795747 [355030.4, 154047.86, 145800.0] 6795749 2863104 5 NaN [355045.38, 154180.1, 145800.0] 6795745 1811442 5 NaN [355024.44, 153945.73, 145760.0]
4 6797452 [353221.4, 148570.9, 147320.0] 6797456 2863104 5 NaN [354213.9, 148397.44, 147320.0] 6797437 1811442 5 NaN [353447.6, 148704.88, 147560.0]
# Visualize
points = np.vstack(cn.connector_loc)

navis.plot3d([da1.idx[[2863104, 1811442]],  # plot the two neurons
              points],  # plot the points of synaptic contacts as scatter 
              scatter_kws=dict(name="synaptic contacts")
              )